【投票】你喜欢哪种词性标注集?

HanLP从1.x到2.x,陆陆续续发布了许多种不同标注集的词性标注模型。不知道大家在研究和工作中偏好哪一种?欢迎投票:

0 投票者

1 Like

从兼容的角度看,不如继续使用原来Hanlp1.x的标注

CTB的垄断优势来自parsing的paper多用其作为benchmark,而且后续CPB又是基于CTB产生的,有优势富集效应。

从推动汉语parsing的角度来讲,要“用爱发电,坚持开源”,只有benchmark越来越容易获取,才能产生比较优势。

NLP里面的CLUE,已经证明这个可行!

Parsing也要建立新的公开数据验证平台,抹平这个信息差。最近百度有意做一个公开的数据集,但是标注不同,又只是放出来test集合,诚意不足!

令,求CPB的数据集,太贵了!

1.x的标注虽然包罗万象,但本质上是个大杂烩,在设计上并不科学。

开源在大陆是不可行的,就像BT下载在大陆干不过迅雷一样。这一点,我很早就意识到了:

其实Google的Universal Dependencies已经有了,只不过是繁体中文。百度就不提了。

这个应该是求不来的,虽然我也痛恨LDC的定价,但这不能成为侵害版权的理由。这件事最好由盈利的商业公司来做,在自由的商业竞争中降低成本和定价。
另外,OntoNotes5也提供语义角色标注,而且还是免费的,你可以试试向LDC申请。

1 Like

呜呜呜呜好像要微博的语料啊想拿微博数据去finetune

小孩子才做选择,成年人都要:

{
  "tok/fine": [
    ["2021年", "HanLPv2.1", "为", "生产", "环境", "带来", "次", "世代", "最", "先进", "的", "多", "语种", "NLP", "技术", "。"],
    ["阿婆主", "来到", "北京", "立方庭", "参观", "自然", "语义", "科技", "公司", "。"]
  ],
  "tok/coarse": [
    ["2021年", "HanLPv2.1", "为", "生产", "环境", "带来", "次世代", "最", "先进", "的", "多语种", "NLP", "技术", "。"],
    ["阿婆主", "来到", "北京立方庭", "参观", "自然语义科技公司", "。"]
  ],
  "pos/ctb": [
    ["NT", "NR", "P", "NN", "NN", "VV", "JJ", "NN", "AD", "JJ", "DEG", "CD", "NN", "NR", "NN", "PU"],
    ["NN", "VV", "NR", "NR", "VV", "NN", "NN", "NN", "NN", "PU"]
  ],
  "pos/pku": [
    ["t", "nx", "p", "vn", "n", "v", "b", "n", "d", "a", "u", "a", "n", "nx", "n", "w"],
    ["n", "v", "ns", "ns", "v", "n", "n", "n", "n", "w"]
  ],
  "pos/863": [
    ["nt", "w", "p", "v", "n", "v", "a", "nt", "d", "a", "u", "a", "n", "ws", "n", "w"],
    ["n", "v", "ns", "n", "v", "n", "n", "n", "n", "w"]
  ],
  "ner/pku": [
    [],
    [["北京立方庭", "ns", 2, 4], ["自然语义科技公司", "nt", 5, 9]]
  ],
  "ner/msra": [
    [["2021年", "DATE", 0, 1], ["HanLPv2.1", "ORGANIZATION", 1, 2]],
    [["北京", "LOCATION", 2, 3], ["立方庭", "LOCATION", 3, 4], ["自然语义科技公司", "ORGANIZATION", 5, 9]]
  ],
  "ner/ontonotes": [
    [["2021年", "DATE", 0, 1], ["HanLPv2.1", "ORG", 1, 2]],
    [["北京立方庭", "FAC", 2, 4], ["自然语义科技公司", "ORG", 5, 9]]
  ],
  "srl": [
    [[["2021年", "ARGM-TMP", 0, 1], ["HanLPv2.1", "ARG0", 1, 2], ["为生产环境", "ARG2", 2, 5], ["带来", "PRED", 5, 6], ["次世代最先进的多语种NLP技术", "ARG1", 6, 15]], [["最", "ARGM-ADV", 8, 9], ["先进", "PRED", 9, 10], ["技术", "ARG0", 14, 15]]],
    [[["阿婆主", "ARG0", 0, 1], ["来到", "PRED", 1, 2], ["北京立方庭", "ARG1", 2, 4]], [["阿婆主", "ARG0", 0, 1], ["参观", "PRED", 4, 5], ["自然语义科技公司", "ARG1", 5, 9]]]
  ],
  "dep": [
    [[6, "tmod"], [6, "nsubj"], [6, "prep"], [5, "nn"], [3, "pobj"], [0, "root"], [8, "amod"], [15, "nn"], [10, "advmod"], [15, "rcmod"], [10, "assm"], [13, "nummod"], [15, "nn"], [15, "nn"], [6, "dobj"], [6, "punct"]],
    [[2, "nsubj"], [0, "root"], [4, "nn"], [2, "dobj"], [2, "conj"], [9, "nn"], [9, "nn"], [9, "nn"], [5, "dobj"], [2, "punct"]]
  ],
  "sdp": [
    [[[6, "Time"]], [[6, "Exp"]], [[5, "mPrep"]], [[5, "Desc"]], [[6, "Datv"]], [[13, "dDesc"]], [[0, "Root"], [8, "Desc"], [13, "Desc"]], [[15, "Time"]], [[10, "mDegr"]], [[15, "Desc"]], [[10, "mAux"]], [[8, "Quan"], [13, "Quan"]], [[15, "Desc"]], [[15, "Nmod"]], [[6, "Pat"]], [[6, "mPunc"]]],
    [[[2, "Agt"], [5, "Agt"]], [[0, "Root"]], [[4, "Loc"]], [[2, "Lfin"]], [[2, "ePurp"]], [[8, "Nmod"]], [[9, "Nmod"]], [[9, "Nmod"]], [[5, "Datv"]], [[5, "mPunc"]]]
  ],
  "con": [
    ["TOP", [["IP", [["NP", [["NT", ["2021年"]]]], ["NP", [["NR", ["HanLPv2.1"]]]], ["VP", [["PP", [["P", ["为"]], ["NP", [["NN", ["生产"]], ["NN", ["环境"]]]]]], ["VP", [["VV", ["带来"]], ["NP", [["ADJP", [["NP", [["ADJP", [["JJ", ["次"]]]], ["NP", [["NN", ["世代"]]]]]], ["ADVP", [["AD", ["最"]]]], ["VP", [["JJ", ["先进"]]]]]], ["DEG", ["的"]], ["NP", [["QP", [["CD", ["多"]]]], ["NP", [["NN", ["语种"]]]]]], ["NP", [["NR", ["NLP"]], ["NN", ["技术"]]]]]]]]]], ["PU", ["。"]]]]]],
    ["TOP", [["IP", [["NP", [["NN", ["阿婆主"]]]], ["VP", [["VP", [["VV", ["来到"]], ["NP", [["NR", ["北京"]], ["NR", ["立方庭"]]]]]], ["VP", [["VV", ["参观"]], ["NP", [["NN", ["自然"]], ["NN", ["语义"]], ["NN", ["科技"]], ["NN", ["公司"]]]]]]]], ["PU", ["。"]]]]]]
  ]
}
1 Like